Search results for "atmospheric electricity"

showing 8 items of 8 documents

Radio emissions from double RHESSI TGFs

2016

Abstract A detailed analysis of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) terrestrial gamma ray flashes (TGFs) is performed in association with World Wide Lightning Location Network (WWLLN) sources and very low frequency (VLF) sferics recorded at Duke University. RHESSI clock offset is evaluated and found to experience changes on the 5 August 2005 and 21 October 2013, based on the analysis of TGF‐WWLLN matches. The clock offsets were found for all three periods of observations with standard deviations less than 100 μs. This result opens the possibility for the precise comparative analyses of RHESSI TGFs with the other types of data (WWLLN, radio measurements, etc.) In ca…

Atmospheric ScienceHigh energy010504 meteorology & atmospheric sciencesAtmospheric ElectricityFOS: Physical sciencesRHESSI clock offsetterrestrial gamma ray flashesAstrophysicsRadio atmospheric01 natural sciencesLightningPhysical Geography and Environmental GeoscienceAerosol and CloudsAtmospheric SciencesRemote SensingPhysics - Space Physics0103 physical sciencesEarth and Planetary Sciences (miscellaneous)Instruments and TechniquesVery low frequency010303 astronomy & astrophysicsResearch ArticlesTGF‐WWLLN match0105 earth and related environmental sciencesRadiative ProcessesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Remote Sensing and DisastersGamma raymultipeak TGFsWorld wideLightningRHESSI TGFsSpace Physics (physics.space-ph)Geophysicsradio emission from TGFClock offset13. Climate actionSpace and Planetary ScienceAtmospheric ProcessesAstrophysics - High Energy Astrophysical PhenomenaNatural HazardsResearch Article
researchProduct

Enhanced detection of terrestrial gamma-ray flashes by AGILE

2015

At the end of March 2015 the onboard software configuration of the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration (<100 μs), and part of them has simultaneous association with lightning sfer…

010504 meteorology & atmospheric sciencesGamma rayRadio atmosphericDead time01 natural sciencesLightningWorld wideGeophysics13. Climate action0103 physical sciencesGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteAtmospheric electricity010303 astronomy & astrophysicsShort duration0105 earth and related environmental sciencesRemote sensingGeophysical Research Letters
researchProduct

Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra

2008

[1] On the basis of the RHESSI results it has been suggested that terrestrial gamma flashes (TGFs) are produced at very low altitudes. On the other hand some of the Burst and Transient Source Experiment (BATSE) spectra show unabsorbed fluxes of X rays in the 25–50 keV energy range, indicating a higher production altitude. To investigate this, we have developed a Monte Carlo code for X-ray propagation through the atmosphere. The most important features seen in the modeled spectra are (1) a low-energy cutoff which moves to lower energies as TGFs are produced at higher altitudes, (2) a high-energy cutoff which moves to lower energies as TGFs are observed at larger zenith angles, and (3) time d…

PhysicsAtmospheric ScienceEcologyAstrophysics::High Energy Astrophysical PhenomenaCompton scatteringPaleontologySoil ScienceForestryAstrophysicsAquatic ScienceOceanographySpectral lineAtmosphereGeophysicsAltitudeRelativistic runaway electron avalancheSpace and Planetary ScienceGeochemistry and PetrologyPhysics::Space PhysicsEarth and Planetary Sciences (miscellaneous)Atmospheric electricityZenithEarth-Surface ProcessesWater Science and TechnologyTerrestrial gamma-ray flashJournal of Geophysical Research: Space Physics
researchProduct

Observation of Terrestrial Gamma-Ray Flashes at Mid Latitude

2021

We present a sample of Terrestrial Gamma-ray Flashes (TGFs) observed at mid latitudes by the Atmosphere Space Interaction Monitor (ASIM). The events were detected between June 2018 and August 2020 in the latitude bands between 35° and 51° in both hemispheres, which we hereafter refer to as “mid latitudes.” The sample includes the first observations above urn:x-wiley:2169897X:media:jgrd57293:jgrd57293-math-0001 and consists of 14 events clustered in four geographical regions: north-west Atlantic and eastern USA; Mediterranean Sea; the ocean around South Africa; and north-eastern China and Siberia. We examine the characteristics of each event, both standalone and in the context of the global …

Atmospheric ScienceGeophysicsSpace and Planetary ScienceMiddle latitudesEarth and Planetary Sciences (miscellaneous)Gamma rayEnvironmental scienceAtmospheric electricityAtmospheric sciencesLightningRadiofrequency radiation
researchProduct

Enhanced detection of terrestrial gamma-ray flashes by AGILE

2015

Abstract At the end of March 2015 the onboard software configuration of the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma‐Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration (<100 μs), and part of them has simultaneous association with light…

High Energy Astrophysical Phenomena (astro-ph.HE)Solar Physics Astrophysics and AstronomyAtmospheric ScienceFOS: Physical sciencesterrestrial gamma-ray flashesterrestrial gamma‐ray flashesatmospheric electricity; terrestrial gamma-ray flashesTGFSpace Physics (physics.space-ph)LightningResearch Lettersatmospheric electricityPhysics - Space PhysicsAtmospheric ProcessesResearch Letter:Matematikk og Naturvitenskap: 400 [VDP]Instruments and TechniquesAGILE TGFAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Observationally Weak TGFs in the RHESSI Data

2019

Abstract Terrestrial gamma ray flashes (TGFs) are sub‐millisecond bursts of high energetic gamma radiation associated with intracloud flashes in thunderstorms. In this paper we use the simultaneity of lightning detections by World Wide Lightning Location Network to find TGFs in the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data that are too faint to be identified by standard search algorithms. A similar approach has been used in an earlier paper, but here we expand the data set to include all years of RHESSI + World Wide Lightning Location Network data and show that there is a population of observationally weak TGFs all the way down to 0.22 of the RHESSI detection thresh…

Atmospheric Science010504 meteorology & atmospheric sciences[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]Atmospheric ElectricityPopulationHard radiationAstrophysics01 natural sciencesLightningterrestrial gamma‐ray flahesAerosol and CloudsLatitude0103 physical sciencesEarth and Planetary Sciences (miscellaneous)RHESSIobservationally weakeducation010303 astronomy & astrophysicsResearch Articles0105 earth and related environmental sciencesPhysicseducation.field_of_studyGamma rayNetwork datathunderstormsLightningWorld widehard radiationGeophysicsSpace and Planetary ScienceAtmospheric ProcessesThunderstormResearch ArticleJournal of Geophysical Research: Atmospheres
researchProduct

Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin

2015

Abstract  We present three terrestrial gamma ray flashes (TGFs) observed over the Mediterranean basin by the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) satellite. Since the occurrence of these events in the Mediterranean region is quite rare, the characterization of the events was optimized by combining different approaches in order to better define the cloud of origin. The TGFs on 7 November 2004 and 16 October 2006 came from clouds with cloud top higher than 10–12 km where often a strong penetration into the stratosphere is found. This kind of cloud is usually associated with heavy precipitation and intense lightning activity. Nevertheless, the analysis of the cloud type…

TLEAtmospheric ScienceAtmospheric ElectricityFOS: Physical sciencesAstrophysicsAerosol and CloudsTroposphereAltitudeRaigs gammaPhysics - Space PhysicsEarth and Planetary Sciences (miscellaneous):Matematikk og Naturvitenskap: 400 [VDP]StratosphereResearch ArticlesPhysics:Física [Àrees temàtiques de la UPC]Cloud topGamma raysGamma raythunderstormsLightningMonte Carlo techniqueSpace Physics (physics.space-ph)TGF:Energies::Energia elèctrica [Àrees temàtiques de la UPC]Physics - Atmospheric and Oceanic PhysicsGeophysicsterrestrial gamma ray flashx-ray13. Climate actionSpace and Planetary ScienceAtmospheric and Oceanic Physics (physics.ao-ph)Atmospheric ProcessesThunderstormSatellitelightningResearch ArticleJournal of Geophysical Research. Atmospheres
researchProduct

High-speed intensified video recordings of sprites and elves over the western Mediterranean Sea during winter thunderstorms

2010

We report the first intensified high‐speed video images of elves, sprites, and halos observed in Europe. All the events corresponded to winter season thunderstorms over the Mediterranean Sea. The observations comprise many elves generated by both cloud‐to‐ground lightning current polarities. In 8 of the 14 sprite observations we observed an elve previous to the sprite. In three cases we observed also an elve quickly followed by a halo and a sprite. In several observations we observed lightning light before the mesospheric transient luminous event. We present a case where the lightning from cloud tops was visible during the entire event. Thanks to the high‐speed videos and their resolution a…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorology0207 environmental engineeringSoil Science02 engineering and technologyAquatic ScienceOceanography01 natural sciencesMediterranean seaSprite (lightning)Geochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Thundersnow020701 environmental engineering0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyEcologyCloud topPaleontologyForestryVideo imageGeophysics13. Climate actionSpace and Planetary ScienceThunderstormLight emissionAtmospheric electricityGeologyJournal of Geophysical Research: Space Physics
researchProduct